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A Continued Fraction Algorithm for Real 
Algebraic Numbers* 

By David G. Cantor, Paul H. Galyean and Horst G. Zimmer 

Abstract. Let a denote a real algebraic number that is a root of a polynomial f(x) E Z[x]. 
The purpose of this paper is to state an algorithm for finding the simple continued fraction 
expansion of a. Furthermore, an application of the algorithm to sign determination in real 
algebraic number fields is given. 

1. Introduction. The task of constructively computing the simple continued 
fraction expansion (see [2]) for a real root a of a polynomial 

f(x) = boxm + biXm-l + ... + bm (bo $ 0) 

over the rational integers Z raises no essential difficulties provided that a is the sole 
real root of f(x). However, if f(x) happens to have more than one real root, the problem 
arises of discriminating between the continued fraction expansion of a and of the 
other real roots of f(x). 

An attempt to solve this problem was made by Zassenhaus [5], who showed that, 
after a finite number of steps, the so-called "reduced state" of the continued fraction 
expansion of a (see below) is reached. (See also [2].) From there on, the discrimination 
of the real roots is automatically guaranteed. Unfortunately, no indication is given 
in Zassenhaus' method as to when the reduced state will be attained for a given a, nor 
does there seem to exist a simple device for achieving that state (cf. [6]). Nonetheless, a 
computer program was written by Smith [3] in which the method is applied to some 
special cases. 

2. The Continued Fraction Algorithm. In this paper, we describe a different 
continued fraction algorithm that furnishes a solution to the discrimination problem 
mentioned above and that, moreover, appears to be much simpler than the routine 
designed by Zassenhaus [5]. 

Let us first remark that, as Zassenhaus [5] observed, it is expedient to reduce f(x) 
to a polynomial having no multiple factors. We can eliminate them by replacing 
f(x) by the polynomial f(x)/(f(x), f'(x)). In the trivial case in which a is a rational 
root of f(x), the algorithm will simply terminate after a finite number of steps. 

We confine ourselves therefore to giving a description of the algorithm as applied 
to an irrational real root a of the (not necessarily irreducible) polynomial f(x) in Z[x]. 
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The polynomial f(x) may, moreover, be supposed to have no rational roots at all. The 
continued fraction expansion of a is then calculated assuming that a is isolated by 
rational numbers (or infinity) r and s; i.e., a is the unique root of f(x) in the closed 
interval [r, s]. Put rO = r, sO = s, and define the 0th successor ao of a by 

a0 = a, 

the 0th partial denominator aO of a by 

aO= [ao] 

where [ ] designates the greatest integer function, and the 0th successor polynomial 
fo(x) of f(x) by 

fo(x) = f(x). 

We have fo(ao) = 0. 
Let us assume by induction that, for an integer n > 1, a^n- is an irrational real 

root of a polynomial 

f.-1(x) = bo,.-1xm + bl,I1xml 1 + *. + bm,n-I 

(bo,ni 5- 0), (b, o = bi for 0 < i < 

over Z having neither multiple factors nor rational roots, and that an-, is the unique 
root of fn-(x) in the closed interval [rn-1, sn-1]. 

Next, put an-l = [anj], and let 

rn= (Sn- - an-1) if Sn-1 < an-1 + 1, 

= 1 otherwise, 

Sn =(rn 1 - an-1) if rn-1 > an-1, 

= otherwise. 

Define the nth successor an of a by 

an = (an-1 - an-0 ) s 

the nth partial denominator an of a by 

an = [angn 

and the nth successor polynomial fn(x) of f(x) by 

fn(x) = Xmfn-1(X + an-1) 

Clearly, fn(x) is a polynomial over Z having neither multiple factors nor rational 
roots, and an is one of the irrational real roots of fn(x). Moreover, an is the unique 
root of fn(x) in the closed interval [rn, sn]. Note that for n > 1, we have an > 1 and 
1 < rn < sn < c 

The definition of rn, sn and an leads us to the following observation which is of 
significance for the discrimination problem mentioned at the beginning (cf. [2] and 
the Theorem of Vincent [4]). 
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THEOREM. Under the above hypothesis on a, r, and s, there exists n, such that, for 
all n _ n1, we have 

rn= I and sn = cn* 

Proof. The assertion results from two facts that are immediate consequences 
of the definition of r,, sn and an. 

(1) If rn = 1 or sn = co for some integer n > 1, then it follows that 

rn= 1 for all even or all odd natural numbers i, 
respectively, 

and that 

Sn+ j = o for all odd or all even natural numbers j, 
respectively. 

(2) For all integers n > 1, the following hold: 

either rn = 1 or an-1 = [sn_] 

and 
either sn = o or an,l = [rnj]. 

Once we have arrived at an index n >? 1 such that r,- = 1 and s,,n = co, statement 
(1) implies that rn = 1 and sn = o for all n ? n,. To see that n1 exists, consider the 
sequences S = {[rj], [sj], [r2], ... } and T = I[s0], [rj], [s2], ... }, which are initially 
the continued fraction expansions of r and s, respectively. By (2), S and T must each 
eventually differ from the continued fraction expansion {ao, al, a2, ... } of a since 
r 4 aands $ a. Sand Teachthen become {... , 1, , 1, , **} 

The actual determination of the partial denominators an of a can now be carried 
through in the following manner (see also [5]). 

First, we find improved bounds for the irrational real root an Of fn(x) where 
n > 0. To this end, we have to introduce the set 

(1) (2) (i) 

a, = a^n , a,n C * a,.n 

of the complex roots of fn(x). We recall that these roots can be defined inductively by 
setting ac i ) = a (i) and, for n > 1, 

a(i) = (a(')1 - an-1)' (i = 1, 2, * , in). 

Also, we use the nth convergent of the continued fraction expansion of a, that is, the 
fraction (see [2]) 

[ao, al, , , an] = Pn/qn (pn, qn E Z) - 

As usual, define p-1 = 1 and q_1 = 0. 
The integers pn-l Pn-2 and qn-1, qn-2 (n > 1) appear in the formula connecting 

et 1 with a,i), namely, 

a = (Pn-lan + Pn-2)/(qn-lan + qn-2) (i = 1, 2, * * * , m) 

or, conversely, 

a = (qn-20t - Pn-2)/(qn-la Pn-1)- 
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We write the latter relation for n _ 2 in the form 

(i) a_ 
( 

Pn-2/qn-2 qn-2 
=n 

a - q - (i = 1, 2, ,i). 

ae Pn-l/q -1 qn-I 

Noting thatpn-2/qn-2 --*a and Pn1/qn- l a, as n -* o, and that a $ a(i for all i 
in the interval 1 < i ? m, we conclude that, for i $ 1 and for all large n, the Ia(') I are 
asymptotic to qn-2/qn1. On the other hand, it follows from the second of the two 
relations 

Pn-I = Pn-2an-1 + Pn-3 (n _ 2), 

qn-I = qn-2an-1 + qn-3 

or, respectively, from the definition of q-l and q0 that 

qn-2/qn-I _ an-1 (n _ 2) 

with strict inequality for n ? 3. For all large n, the conjugates a M of a,, = a1) satisfy 

lat |i < an-1 (I < i _ m). 

It is clear from the above relations that there exists n2 such that, for all n _ n2, the 
following two conditions are fulfilled: 

an > 1, 

0 < - Re (an" ) < la I < 1 (1 < i ? m), 

where "Re" denotes the real part of a complex number. This is what Zassenhaus [5] 
calls the reduced state of the continued fraction expansion of a. Thus, for all large n, 
an is a PV number. 

As soon as the reduced state is reached, we know, because of the relation 
m 

EI aSi) = -bl,n/bo 
i=1 

on the roots ali) of fn(x), that an = a(l) lies in the interval 

- bl,n/bo,n < atn < (m - 1) - bl,nlbo,n- 

The upper bound for an can be further improved. Specifically, from the relations 
derived above, we infer that an is asymptotic to (m - )qn 2/qn - b,n/b,n and 
moreover, that there exists n3 such that, for all n _ n3, we have 

atn < (m - 1)/an-I - bl,n/bO,n 

Now, if n _ 1 and ao, a,, * * *, an-, are already computed, we calculate an via a 

modified binary search process in the interval un < an-< vn which is roughly defined as 
follows. Put 

n4 = max{n1, n2, n3}, 

where n, are the preceding index bounds. Then, we put for n < n4, 

Un = [rn] if n is even, 

= [Sn] if n is odd, 
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v" = min{[s], [tn]}, if n is even, 

= min{[rn], [tn]}, if n is odd, 

where 

tn = 1 + max{Ibijnl/lbo,nI}, 
1:5 i ! m 

and, for n _ n4, 

u= max{1, [-bj,n/bb,nI}, 

vn = [(m - 1)/an-I - bi n/bo,n]. 

Note that, for n > 1, un and vn, are positive integers. 
The nth partial denominator an of a is then determined as the unique natural 

number XA in the interval Un < XA, < vn for which 

sgn fn(n) $? sgn fn(Xn + 1). 

Before describing the binary search process for an, we note that, if n _ n4, it is 
expedient to precede the binary search with the sign test for 

X. = [(im - 1)qn-2/q- I - bl,n/bo,n], 

because the number in square brackets is, as we have seen, a good approximation to 
an. This, of course, requires computation of the qn. If sgn fn(Xn) $? sgn fn(Xn + 1) for 
this Xn, then an = X,. Otherwise, we start the binary search as follows. We put Xn = Vn 

and check whether sgn fn(Xn) $? sgn fn(Xn + 1). If so, then an = vn. If not, we know that 
un < an < vn- 1. Unless un = vn -1, in which case an = un, we put 

Wn = [2(Un + Vn)I 

and compare the signs of fn(wn) and fn(vn), say. If they differ, we replace un by wn; 
otherwise, we leave un unchanged and substitute kn for vn. The search process is then 
repeated (if need be) with respect to the new interval, until un = vn - 1. 

This algorithm has been implemented as a computer program which we shall use 
to build the example of Section 4. 

3. An Application of the Algorithm to Sign Determination. In this section, 
we shall outline a method for performing sign determination in a real algebraic 
number field 

K = Q(a) 

over the field of rational numbers Q, where a is an irrational real root of a (not 
necessarily irreducible) polynomial f(x) in Z[x] of degree m > 1 as before. This 
method seems to be somewhat simpler than the one proposed by Kempfert [1] and 
Zassenhaus [6]; however, their method applies to any ordered field. 

Every element A E K can be represented in the form A = g(a) with a polynomial 
g(x) in Q[x] of degree <im. 

First of all, we may assume that g(a) 5 0, since if g(a) were 0, then (f(x), g(x)) $ 1. 
To determine the sign of g(a), we employ the continued fraction algorithm of 

Section 2 in order to approximate a by its convergents pn/qn. The theory of continued 
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fractions yields, for the approximation of a by pt,I/qt7, the estimate (see [2]) 

a - Pn/qnI < 1/q'n 

where qn cn , as n -*co. 
We shall show that, for all large n, the sign of g(a) can be obtained from the 

relation 

sgn g(a) = sgn g(piqn) ) 

To this end, we note that, by the mean value theorem (cf. [6]), the formula 

g(a) - g(pn/qn) = g'(0)(a Pn/qn) 

is valid, where g'(x) denotes the derivative of g(x) and t is a real number lying between 
a and p,I/q,. Let M be a bound for g'(x) for x, say between p0/q0 and pl/q1. We thus 
have 

Ig(a) - g(pn/qn)I < M/qn 

Then g(pn/qn) -* g(a). For large enough n, lg(pn/qn)l > M/q2 and then 
sgn g(p./q.) = sgn g(a). 

4. An Example for the Continued Fraction Algorithm. We compute here the 
continued fraction expansion for three roots of the polynomial 

f(x) = X- 7x + 3 

which has three irrational real roots and four complex roots. 
In the table which follows, the first column contains n, the second, third, and 

fourth contain the an for the three real roots a (1) -1.444 * * , a (2) 0.429 * * * 
a (3) 1.233. 

n a 
(1) 

aX(2) aX(3) 

0 -2 0 1 
1 1 2 3 
2 1 3 2 
3 3 53 2 
4 1 5 4 
5 86 1 15 
6 63 2 4 
7 1006 1 1 
8 2 1 7 
9 1 1 70 

10 3 1 1 
11 3 91 7 
12 2 1 2 
13 3 1 1 
14 1 1 8 
15 1 5 4 
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